Van der Waals interactions in density- functional theory: implementation and applications
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Andris Guļāns Name of the doctoral dissertation Van der Waals interactions in density-functional theory: implementation and applications Publisher School of Science Unit Applied Physics Series Aalto University publication series DOCTORAL DISSERTATIONS 6/2012 Field of research Electronic structure theory Manuscript submitted 3 October 2011 Manuscript revised 14 November 2011 Date of the defence 20 January 2012 Language English Monograph Article dissertation (summary + original articles) Abstract The density functional theory is, in principle, an exact ground-state method for interacting electrons. However, commonly applied local approximations make it severely unsuccessful for modelling materials where van der Waals interactions play a central role. The problem can be overcome by the van der Waals density-functional approach, which relies on a density functional with a built-in non-locality. This Thesis reflects on efforts towards efficient numerical implementation of the approach and its application to a variety of problems such as molecule adsorption, self-assembly and defects in graphite. Surprisingly for the condensed-matter community, in cases where a molecule is attached to a surface by the "weak" van der Waals forces they tend to be not so weak after all. These forces can seriously influence kinetics of various physical and chemical processes on surfaces or in layered solids. Hence, ignoring or mishandling the van der Waals interaction potentially leads to quantitatively and sometimes even qualitatively wrong results.The density functional theory is, in principle, an exact ground-state method for interacting electrons. However, commonly applied local approximations make it severely unsuccessful for modelling materials where van der Waals interactions play a central role. The problem can be overcome by the van der Waals density-functional approach, which relies on a density functional with a built-in non-locality. This Thesis reflects on efforts towards efficient numerical implementation of the approach and its application to a variety of problems such as molecule adsorption, self-assembly and defects in graphite. Surprisingly for the condensed-matter community, in cases where a molecule is attached to a surface by the "weak" van der Waals forces they tend to be not so weak after all. These forces can seriously influence kinetics of various physical and chemical processes on surfaces or in layered solids. Hence, ignoring or mishandling the van der Waals interaction potentially leads to quantitatively and sometimes even qualitatively wrong results.
منابع مشابه
Thermodynamics and Kinetics of Spiro-Heterocycle Formation Mechanism: Computational Study
Reaction mechanism among indoline-2,3-dione, pyrrolidine-2-carboxylic acid and (Z)-2-(1-(2-hydroxynaphthalen-1-yl)ethylidene)hydroxycarboxamide to form 1’-((((aminooxy)carbonyl)amino)methyl)-2’-(1-hydroxynaphthalen-2-yl)-2’-methyl-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolo[1,2-a]imidazole-2-one was investigated using density functional theory (DFT) at B3LYP basis theory. The three-...
متن کاملExploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study
The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs ...
متن کاملHighly Sensitive Detection of H2S Molecules Using a TiO2-Supported Au Overlayer Based Nanosensors: A Van Der Waals Corrected DFT Study
The adsorption of the H2S molecule on the undoped and N-doped TiO2 anatase supported Au nanoparticles were studied using density functional theory calculations. The adsorption of H2S on both Au and TiO2 sides of the nanoparticle was examined. On the TiO2 side, the fivefold coordinated titanium site was found to be the most favorable binding site, giving rise to the strong interaction of H2S wit...
متن کاملnoloco: An efficient implementation of van der Waals density functionals based on a Monte-Carlo integration technique
The treatment of van der Waals interactions in density functional theory is an important field of ongoing research. Among different approaches developed recently to capture these non-local interactions, the van der Waals density functional (vdW-DF) developed in the groups of Langreth and Lundqvist is becoming increasingly popular. It does not rely on empirical parameters, and has been successfu...
متن کاملA Computational Study on the Stability of Dapdiamide D Conformers
The conformational analysis of the organic compounds specially the biologically active natural products has attracted the consideration of different research groups. Therefore, in the present study the MP2/6-311+g(d,p)//B3LYP/6-311+g(d,p) level of theory was used to study the conformations of dapdiamide D. The identity of interactions in selected conformers was studied using atom in molecule ap...
متن کامل